Connecting Waterpeople
Aganova
LACROIX
Centro Nacional de Tecnología de Regadíos (CENTER)
Ingeteam
ESAMUR
Catalan Water Partnership
s::can Iberia Sistemas de Medición
IAPsolutions
Red Control
Asociación de Ciencias Ambientales
Lama Sistemas de Filtrado
GS Inima Environment
Hidroconta
MonoM by Grupo Álava
Aqualia
Vector Energy
Schneider Electric
ADASA
Fundación Biodiversidad
Confederación Hidrográfica del Segura
ICEX España Exportación e Inversiones
Barmatec
RENOLIT ALKORPLAN
Cajamar Innova
KISTERS
FENACORE
Baseform
Likitech
CAF
Grupo Mejoras
Xylem Water Solutions España
Rädlinger primus line GmbH
Kamstrup
Minsait
Global Omnium
MOLEAER
Prefabricados Delta
ADECAGUA
Sivortex Sistemes Integrals
IRTA
Fundación CONAMA
J. Huesa Water Technology
EPG Salinas
DATAKORUM
ACCIONA
Idrica
SCRATS
Laboratorios Tecnológicos de Levante
Ministerio para la Transición Ecológica y el Reto Demográfico
ISMedioambiente
Almar Water Solutions
Consorcio de Aguas Bilbao Bizkaia
Molecor
HRS Heat Exchangers
Filtralite
Hach
Innovyze, an Autodesk company
Consorcio de Aguas de Asturias
Hidroglobal
TRANSWATER
AGS Water Solutions
TecnoConverting
FLOVAC
ONGAWA
Sacyr Agua
AMPHOS 21
LABFERRER
Fundación Botín
Agencia Vasca del Agua
AECID
TEDAGUA
Saint Gobain PAM
Amiblu

Se encuentra usted aquí

¿Cómo degradar fármacos en el agua con luz solar?

  • ¿Cómo degradar fármacos agua luz solar?
  • Ingenieros químicos de la Universidad Autónoma de Madrid han desarrollado nuevos fotocatalizadores para eliminar medicamentos y otros contaminantes emergentes del agua utilizando como fuente de energía la radiación solar. Los dispositivos están basados en nanoestructuras con semiconductores y arcilla.

Sobre la Entidad

Agencia Sinc
El Servicio de Información y Noticias Científicas (SINC) es la primera agencia pública de ámbito estatal especializada en información sobre ciencia, tecnología e innovación en español.

En la actualidad existe una creciente preocupación por la presencia de diversos fármacos y productos de cuidado personal, conocidos como contaminantes emergentes (CE), en las aguas superficiales y subterráneas. Esto supone un gran riesgo para el medio ambiente y la salud, ya que muchos de estos compuestos son disruptores endocrinos.

Los métodos convencionales para el tratamiento de aguas no resultan eficaces para la eliminación de contaminantes emergentes, en parte debido a su amplia dispersión y bajas concentraciones. Por ello, en la actualidad, muchas investigaciones se centran en el desarrollo y optimización de tecnologías para el tratamiento de aguas que permitan eliminar estos compuestos con facilidad.

Estos fotocalizadores se basan en heterorestructuras que combinan varios semiconductores y una arcilla

En esta dirección, el grupo de Investigación de la Sección de Ingeniería Química de la Universidad Autónoma de Madrid (UAM) viene trabajando en la utilización de la fotocatálisis solar como tecnología para la eliminación de fármacos presentes en el medio acuático.

Ahora, como constatan en dos trabajos publicados en Chemical Engineering Journal y Journal of Hazardous Materials, han logrado preparar catalizadores basados en heterorestructuras que combinan varios semiconductores y una arcilla.

La fotocatálisis forma parte de los denominados procesos de oxidación avanzada utilizados en el tratamiento de aguas. Esta tecnología se basa en la utilización de un semiconductor que al ser sometido a la radiación solar es capaz de inducir la oxidación de diversos compuestos orgánicos. De esta forma, la fotocatálisis permite transformar la energía solar en energía química y llevar a cabo la degradación de diversos contaminantes.

En sus trabajos iniciales, los investigadores desarrollaron nuevos fotocatalizadores basados en heteroestructuras para la degradación de contaminantes prioritarios como fenol y colorantes. Siguiendo esta línea de investigación, han logrado desarrollar y optimizar fotocatalizadores para la degradación de fármacos, tras obtener por primera vez nanoestructuras basadas en TiO2-ZnO y Zr-TiO2 soportadas sobre una arcilla deslaminada mediante un método sol-gel modificado.

Esquema de las nuevas nanoestructuras preparadas y su uso para la degradación de diversos fármacos. / UAM

El poder del dióxido de titanio

Entre los semiconductores, el dióxido de titanio es el más ampliamente utilizado debido a sus propiedades, tales como alta estabilidad química, no toxicidad, biocompatibilidad y fuerte poder redox. Con el fin de mejorar el rendimiento fotocatalítico de los catalizadores de TiO2 y mejorar la eficacia bajo luz visible, la estrategia de nuestro grupo se ha centrado en la síntesis de fotocatalizadores en los que se ensamblan diversos semiconductores acoplados sobre un soporte poroso”, explica Monserrat Tobajas, coautora del estudio.

“Disponemos de un reactor fotocatalítico equipado con un simulador solar que permite trabajar con radiación solar en el laboratorio, controlando la intensidad de radiación, así como las concentraciones de catalizador y contaminante, escogiéndose diversos fármacos como antipirina y acetaminofeno, ampliamente utilizados por el ser humano”, apunta Carolina Belver, también coautora.

Los resultados mostraron que el catalizador con 0,5% de ZnO y el  dopado con un 2 % de Zr son los más eficientes, alcanzando conversiones superiores al 90 % y mostrandolas mejores velocidades de reacción. Aunque no se logró la mineralización completa de los fármacos (alcanzando sólo el 50 %), lo que supondría una conversión completa a CO2 y H2O, se logró reducir la toxicidad de la disolución del analgésico inicial, ya que los productos formados eran ácidos de cadena corta de baja toxicidad, detallan  las investigadoras.

La redacción recomienda

25/01/2024 · Investigación

Las aguas subterráneas se agotan de forma acelerada en todo el planeta